[Total No. of Pages : 3

1-4-112(A)-R20

THREE YEAR B.A./B.Sc. DEGREE EXAMINATION, OCTOBER - 2022 CHOICE BASED CREDIT SYSTEM FOURTH SEMESTER PART - II - MATHEMATICS Paper : IV : REAL ANALYSIS (Under CBCS New Regulation w.e.f. the academic Year 2021-22)

Time: 3 Hours

Max. Marks: 75

(5×5=25)

SECTION-A

విభాగము – ఎ

Answer any Five of the follwoing questions.

Prove that a sequence can have at most one limit.
 ఒక అన్నుకమానికి మహా అయితే, ఒక అవధి పుండును, అని నిరూపించండి.

2. Let (x_n) be a sequence defined by $x_1 = 2$, $x_2 = 2$ and $x_n = \frac{1}{2}(x_{n-2} + x_{n-1})$ for n>2. Then prove that (x_n) is convergent.

 (x_n) అనుక్రమాన్ని $x_1 = 2, x_2 = 2$ మరియు n>2 కు $x_n = \frac{1}{2}(x_{n-2} + x_{n-1})$ గా నిర్వచిస్తే (x_n) అభిసరిస్తుంది అని నిరూపించండి.

3. Test the convergence of the series
$$\sum \frac{1}{n(n+1)(n+2)}$$
.

$$\sum \frac{1}{n(n+1)(n+2)}$$
 (శేణి అభిసరణతను పరీక్షించండి.

4. If $\sum a_n, a_n > 0$ is convergent, then prove that $\sum \sqrt{a_n}$ is also convergent. $\sum a_n, a_n > 0$ welves $\frac{1}{2}$, $\sum \sqrt{a_n}$ since welves $\frac{1}{2}$, $\frac{1}{2}$ and $\frac{1}{2}$.

1-4-112(A)-R20

[P.T.O.]

5. Show that $f(x) = x^2$ is uniformly continuous on [a,b].

 $f(x) = x^2$, [a,b] 3ු බ්ජිර්ගය මබ්දාුන්ට මබ් සංකාශයේ.

- 7. If f is differential on an interval I and $f'(x) \ge 0$ for all $x \in I$, then prove that f is increasing on I.

అంతరం I పై f అవకళనీయం మరియు ప్రతి $x \in I$ కు $f'(x) \ge 0$ అయితే, f ఆరోహణం అని నిరూపించండి.

8. Show that, every constant function is Riemann integrable on [a,b].

పతి స్థిర ప్రమేయం [a,b] పై రీమాన్ సమాకాలనీయం అని చూపండి.

SECTION-B

Answer All questions.

(5×10=50)

9. a) Prove that $\lim_{n\to\infty} n^{1/n} = 1$.

 $\lim_{n \to \infty} n^{1/n} = 1$ ອຸລ ລຽກພວບດີ.

(OR/ව්යු)

- b) State and prove Bolzano Weierstrass theorem for sequences.
 అనుక్రమాల బోల్జాన్ వెయ్కోస్ సిద్ధాంతాన్ని ప్రవచించి, నిరూపించండి.
- 10. a) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges when p>1.

p>1 అయినపుడు, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ (శేణి అభిసరిస్తుంది, అని చూపండి.

(OR/ඒක್)

b) State and prove Integral test for series.
 శ్రీణుల సమకాలన పరీక్షను ప్రవచించి, నిరూపించండి.

1-4-112(A)-R20

11. a) Let f be a continuous function on [a,b] such that f(a)f(b) < 0. Then prove that there exist $c \in (a,b)$ such that f(c) = 0.

f అనేది [a,b] పై అవిచ్ఛిన్నం మరియు f(a)f(b) < 0 అనుకొనుము. ఒక $c \in (a,b)$ అనేది f(c) = 0 అయ్యే విధంగా వ్యవస్థితం అని నిరూపించండి.

(OR/ඒයං)

b) If f is a real valued continuous function defined on [a,b], then prove that f is uniformly continuous on [a,b].

వాస్తవ మూల్య ప్రమేయం f, [a,b] పై అవిచ్ఛిన్నం అయితే, అపుడు f ఏకరూప అవిచ్ఛిన్నం అని నిరూపించండి.

12. a) Let g: I → R and f: J → R be functions such that f(J) is a subset of I, and ∈ J. If f is differentiable at c, and if g is differentiable at f(c), then prove that the composite
function gof is differentiable at c and (gof)'(c) = g'(f(c))f'(c).

 $g: I \to R$ మరియు $f: J \to R \oplus f(J)$, I కి ఉపసమితి మరియు $c \in J$ అయ్యేవిధంగా రెండు [పమేయాలు అనుకొనుము. f, c వద్ద అవకళనీయం మరియు g, f(c) వద్ద అవకళనీయం అయితే సంయుక్త [పమేయం gof, c వద్ద అవకళనీయం మరియు (gof)'(c) = g'(f(c))f'(c) అని నిరూపించండి.

(OR/ ව්යා)

b) State and prove Roll's theorem.
 రోల్ సిద్ధాంతాన్ని ప్రవచించి, నిరూపించండి.

a) State and prove first fundamental theorem of calculus.
 మొదటి కలన గణిత సిద్ధాంతాన్ని ప్రవచించి, నిరూపించండి.

(OR/ව්ය<u></u>)

b) Suppose that f and g two functions in R[a,b]. Then prove that, if $f(x) \le g(x)$ for all $x \in [a,b]$, then $\int_a^b f \le \int_a^b g$.

f మరియు g లు, R[a,b] లో రెండు ప్రమేయాలు అనుకొనుము. ప్రతి $x \in [a,b]$ క్రి $f(x) \leq g(x)$ అయితే $\int_{a}^{b} f \leq \int_{a}^{b} g$ అని నిరూపించండి.

(3)